
MODELING FUNDAMENTAL FREQUENCY DYNAMICS IN HYPOKINETIC DYSARTHRIA

Mahsa Sadat Elyasi Langarani and Jan van Santen

Center for Spoken Language Understanding, Oregon Health & Science University,
Portland, OR, USA

elyasila@ohsu.edu, vansantj@ohsu.edu

ABSTRACT

Hypokinetic dysarthria (Hd), which often accompanies Parkinson’s
Disease (PD), is characterized by hypernasality and by compromised
phonation, prosody, and articulation. This paper proposes automated
methods for detection of Hd. Whereas most such studies focus on
measures of phonation, this paper focuses on prosody, specifically
on fundamental frequency (F0) dynamics. Prosody in Hd is clini-
cally described as involving monopitch, which has been confirmed
in numerous studies reporting reduced within-utterance pitch vari-
ability. We show that a new measure of F0 dynamics, based on a
superpositional pitch model that decomposes the F0 contour into a
declining phrase curve and (generally, single-peaked) accent curves,
performs more accurate Hd vs. Control classification than simpler
versions of the model or than conventional variability statistics.

Index Terms— Hypokinetic dysarthria, Parkinson’s Disease,
Pitch decomposition

1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease that involves
the death of neurons in the substantia nigra of the midbrain, causing
reduced production of dopamine which in turn results in compro-
mised muscular coordination as well as a specific form of dysarthria,
hypokinetic dysarthria (Hd). Features of hypokinetic dysarthria in-
clude hypernasality and compromised phonation (e.g., hoarseness),
prosody (e.g., monopitch, atypical rhythm), and articulation (e.g., ar-
ticulatory undershoot). Not all individuals diagnosed with PD meet
criteria for Hd, although the majority will eventually develop Hd.

There is a growing interest in automatic quantitative characteri-
zation of speech in PD using signal processing and machine learning
methods. Most of these studies focus on phonation, using sustained
phonation recordings in which the patient is instructed to pronounce
a vowel as long as possible at a steady pitch. Little et al. [1] obtained
an overall accuracy of 91.4% for classification of PD vs. Control, us-
ing a kernel-support vector machine with gaussian radial basis ker-
nel function, preceded by application of feature selection methods
to a large set of features (e.g., measures of variation in fundamen-
tal frequency (F0) and amplitude, noise to harmonics ratio, and non-
linear dynamic complexity measures). Other studies used the same
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data and features proposed by Little, with different classifier meth-
ods such as neural nets [2, 3], genetic algorithms [4], or decision
trees [3], slightly improving on Little’s results. A gaussian mixture
model (GMM) based clustering approach [5] even reported 100%
accuracy using 10-fold cross-validation and 50% of the data as test
data.

While these results are impressive, Little’s data base has four
limitations. First, and most important, the overall severity level of
dysarthria in the PD group is not specified. At sufficiently severe
levels of dysarthria, e.g., with extreme hoarseness, the classification
task not only cannot be too difficult, but also any value as a clini-
cally useful instrument is likely to be limited. Second, the groups
are not age-matched, with the ages of the PD and control groups
being 67.78 and 60.25 (t(29) = 1.94, p<0.06, two-tailed) – voice
changes due to aging start accelerating in the early 60’s [6] ; also,
the percentage of females was larger in the control group than in the
PD group (62.5% vs. 30%). Third, since no additional compari-
son groups were included either with other types of dysarthria (e.g.,
spastic, flaccid, hyperkinetic, mixed) or with vocal cord dysfunction
unrelated to dysarthria (e.g., polyps), the specificity of the results
to PD is unknown, thus further detracting from the clinical useful-
ness of the methods. (The current study has the same shortcoming.)
This is not to say, of course, that these methods may not be use-
ful for progression tracking once a diagnosis has been established.
Fourth, usage of sustained phonation recordings does not provide in-
formation about the other aspects of Hd: hypernasality, prosody, and
articulation – only about phonation. The current paper focuses on
prosody, specifically on F0 dynamics.

Earlier work on F0 dynamics has shown reduced variability in
PD (e.g., [7, 8]), as expected given that monopitch is a key fea-
ture of Hd. The goal of this paper is to analyze F0 variability in
more detail, using an explicit F0 model, called the General Super-
positional Model (GSM). According to this model [9], the F0 curve
for a single-phrase utterance can be written as the sum of a phrase
curve and any number of accent curves, one for each foot (a foot is
defined as a stressed syllable followed by zero or more unstressed
syllables, terminated by a phrase boundary or the next stressed syl-
lable). This model, and its special cases, has received considerable
support [9–20]. In terms of this model, reduced variability could
result from atypical values of multiple components. First, a reduced
slope of the phrase curve: whereas in typical speech, there gener-
ally is a declination in F0 , perhaps the underlying factor for reduced
within-utterance variability in PD is the lack of such declination.
Second, reduction in the number of feet. Third, reduction in the
height of either all accent curves or specific (e.g., phrase-initial, fi-
nal) accent curves.



2. FEATURES

2.1. Baseline: Global Pitch Method

We used the per-utterance mean and standard deviation (SD) of F0
as features.

2.2. GSM Variant #1: Modeled Accent Method

In a previous study [11], we proposed a new method to decom-
pose the pitch contour into component curves in accordance with
the GSM: a phrase curve (P (t) in Equation 1) and a sum of one or
more accent curves (A(t) in Equation 1).

F0(t) = P (t) +A(t) (1)
In this method, the phrase curve consists of two linear curves,

between the phrase start and the start of the phrase-final foot, and
between the latter and the end point of phrase, respectively. We use
the combination of skewed normal distribution and sigmoid function
to model three different type of accent curves. First, the skewed nor-
mal distribution is employed to model the rise-fall accent that can
happened in non-phrase-final position (f in Equation 2). Second,
the sigmoid function is used to model the question intonation ac-
cent at the end of a yes/no question phrase (g in Equation 2). And,
third, sum of the skewed normal distribution (f ) and the sigmoid
function (g) is used to model the continuation accent at the end of a
non-utterance-final phrase (h in Equation 2). The number of accent
curves, which is equal to the number of feet in the phrase, is shown
by n in Equation 2. The values a and b are binary and can be used
to compactly express the three accent types as
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For example, a yes/no question sentences with two feet (rise-
fall (H*LL%) and yes/no question (L*H%) accent types) can be rep-
resented by a1 = 1, b1 = 1 and a2 = 0, b2 = 1, respectively.
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In Equation 3 and 4, C and D stand for amplitude of accent
curve.The two parameters set {!, ⇠, ↵} and{�, �} illustrate {scale,
location, skewness} of skewed normal distribution ,and {slope, lo-
cation} of sigmoid function. All these parameters plus three param-
eters of phrase curve are optimized using Sequential Least Squares
Programming (for detailed information look at [11]).

Figure 1 represents the pitch decomposition of an utterance
whose content is: “All are believed to be embassy employees.” into
component curves, for a 49 year-old female drawn from the control
group. Raw F0 is represented by the red dotted line, and the pre-
dicted F0 contour is represented by the blue line, which in turn is
sum of the green and magenta lines, representing the phrase curve
and accent curves, respectively. The gray vertical lines represent the
foot boundaries. We refer to the method that uses as its features pa-
rameters extracted from the fitted accent curves (e.g., peak location;
see section 3.3) as the Modeled Accent Method.

Fig. 1: Example pitch decomposition contours of a 49 year old fe-
male in the Control group for a sentence with feet boundaries marked
with brackets “[All are be][lieved to be][embassy emplo][yees].”

2.3. GSM variant #2: Local Pitch Method

The Local Pitch Method uses a special case of the GSM, where
the phrase curve is discontinuous, consisting of linear segments that
each have a zero slope. In other words, the frequency value of the
phrase curve in each foot is equal to the minimum F0 value in a
foot. The accent curves are obtained by, for each foot, subtracting
this phrase curve from F0. This method is used to assess the impor-
tance of a sloping, continuous phrase curve. The difference with the
Modeled Accent Method lies in how the accent curves are computed
(fitted vs. obtained by subtraction of a phrase curve from the raw F0
curve).

2.4. GSM Variant #3: Raw Accent Method

The Raw Accent Method uses the same two-piece phrase curve as
defined in section 2.2 in the Modeled Accent Method. This method is
similar to the Local Pitch Method in that accent curves are obtained
by subtraction of a phrase curve from the raw F0 curve instead of, as
in the Modeled Accent Method, being model based; what differs is
the phrase curve shape.

3. METHOD

3.1. Participants

Participants were 10 individuals with PD (age 42-80) and 10 healthy
controls (age 49-71). The average ages did not differ significantly
(t(18)=1.08, p>0.25). As in the Little data, the percentage of females
was larger in the control group (60% vs. 30%). Crucially, and pos-
sibly in sharp contrast to the Little data, participants were selected
to have good intelligibility. And indeed, the average Speech Intel-
ligibility values, as measured via Yorkston and Beukelman (1996)’s
Sentence Intelligibility Test [21], were 96.3 and 97.4 in the PD and
control groups, respectively (t(18)=1.21, p>0.2, two-tailed). Thus,
these were groups whose speech problems, if present at all, were
subtle and hence pose a challenging test for any classification algo-
rithm (section 3.4). Using greedy text selection methods [22], we



Method
FPos

Initial Medial FinalFeature Mean
PD

Mean
Control

P-value Feature Mean
PD

Mean
Control

P-value

Modeled Accent loc 0.677 0.629 0.008 loc 0.435 0.462 0.080 —
WTSK 0.108 0.053 0.090

Local Pitch WTSD 29.627 25.395 0.080 — —

Raw Accent

loc 0.688 0.643 0.060 — —
WTSD 24.247 21.218 0.100

Weighted Raw Accent

loc 0.669 0.630 0.100
WTSK 0.239 0.143 0.100 —

WTSD 24.074 20.800 0.090

Table 1: P-values and means for two-group, two-tailed t-tests (PD vs. Control) as a function of FPos, method, and feature; p-values larger
than 0.1 are omitted.

Method TN (%) TP (%) Accuracy (%) F1(score)

Global Pitch 30 75 52.5 0.612
Local Pitch 70 62 66.0 0.646
Raw Accent 62 61 61.5 0.613

Modeled Accent 74 69 71.5 0.708
Weighted Raw Accent 58 68 63.0 0.645

Table 2: Classification performance for each method

selected 37 sentences from the Gigaword Corpus [23] to maximally
cover a (symbolic) feature space defined by features known to affect
F0 such as predicted sentence and word stress, sentence length, and
word length [12]. Recordings were made in a home environment,
using headsets.

3.2. Pitch tracking

We employed the Normalized Cross-Correlation method coupled
with a Viterbi search to extract pitch [24]. We applied linear in-
terpolation between voiced areas to replace the unvoiced areas.

Roughness, hoarseness, and breathiness, typical not only in Hd
but also more generally in older individuals [25] increases F0 halv-
ing and doubling [26]. Therefore, we manually corrected the ex-
tracted F0 curves, blind as to diagnostic status (PD vs. Control).
Finally we converted the F0 values into a logarithmic scale to reduce
the impact of the unequal gender distributions in the two groups.

3.3. Feature extraction

In this study, we computed features for each extracted accent curve
(via the three respective GSM variants), distinguishing between feet
in phrase-initial, phrase-final, and phrase-medial (i.e., neither initial
nor final) position (FPos). We compute four statistical features per
extracted accent curve: 1) Location (loc): location of the peak nor-
malized by foot duration. 2) Magnitude (mag): the amplitude of the
accent curve. 3) Weighted temporal standard deviation (WTSD):
the WTSD of the accent curve’s distribution (Equation 5). In equa-
tion 5, t
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Weighted temporal skewness (WTSk): the WTSk of the accent
curve (Equation 6).
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To explore the discriminatory power of each feature, we applied
t-tests to the per-speaker means of these accent features.

For SVM based classification we used larger sets of features,
which also included per-speaker standard deviations (SD). Set1 was
used for the Global Pitch Method and Set2 for the other methods,
where:

•Set1=
(

(Per-speaker)median of pitchmean, SD

(Per-speaker)SD of pitchmean, SD

•Set2=

8
><

>:

FPos

(Per-speaker)median of loc,mag,WTSD,WTSk

(Per-speaker)SD of loc, mag,WTSD,WTSk

3.4. Performance of the Global Pitch, Local Pitch, and Raw Ac-
cent methods.

For the Global Pitch Method, we extracted two features, the mean
and SD of the F0 curve for each utterance (37 utterances for each
speaker), and four features (loc, mag, WTSD, and WTSK) for
the Local Pitch and Raw Accent methods, for each foot of each ut-
terance (ranging from 96 to 118 feet per speaker).

We applied two-group, two-tailed t-tests (PD vs. Control) to
these features. For the Global Pitch Method features, no significant
differences were found. The third and fourth rows in the Table 1
evaluate the features derived from the Local Pitch and Raw Accent
methods, and present some marginally significant results. Interest-
ingly, only the phrase-initial feet seem to matter.

We next employed an RBF kernel based SVM using the scikit-
learn toolkit [27] to classify PD vs. Control for each method. We set
the gamma and C SVM parameters to 10�1 and 105, respectively.
We used Set1 for the Global Pitch Method and Set2 for the other
methods. For evaluating the SVM results, we used accuracy and
F1 measures. The accuracy is the average of the true positive (TP ,
the percentage accurate classification of participants with PD) and
true negative (TN , the percentage accurate classification of control
participants) rates; F1 is computed from Equation 7.

F1 =
2TP

2TP + FP + FN

(7)

where FP is the false positive rate (100 � TP ), and FN the false
negative rate (100� TN). Table 2 shows for each method the aver-
ages over all selections of two held-out participants. As we expected
based on the t-test results, features extracted from the Global Pitch



(a) Participant in Control group (b) Participant in PD group

Fig. 2: Fitted curves for two 66-year old male participants.

Method essentially yield chance performance. In contrast, features
extracted from the two other methods perform better than chance.
This suggests that foot-based features are more informative than
global, whole-phrase features.

3.5. Performance of the Modeled Accent Method

We now turn to the Modeled Accent Method (section 2.2). To en-
sure that any results are not due to a better model fit in one group,
we applied a t-test to the per-participant means of the root mean
square (RMS) deviation of the predicted and observed F0 values.
No significant difference between the groups was found, with the
RMS values for the PD and control groups at 0.82 and 0.88, respec-
tively. Figure 2 shows an example of pitch decomposition of a sen-
tence “Afghan government officials were not immediately available
to confirm the decision” into accent curves and phrase curve. Sub-
figure a and b represent the curves for two 66 year old male subjects
in each group. The relatively good fit of the model is clear. We
note the difference in the shape of the accent curves, specially for
the phrase-initial foot.

After extracting the four standard features from the estimated
accent curves (i.e., loc, mag, WTSD, and WTSK) , we applied
t-tests in the same way as was done for the other models (Table 1,
row labeled “Modeled Accent”). Results indicate that the groups
differed significantly in the peak location of phrase-initial feet. Ta-
ble 2 illustrates that the features (Set2) extracted via the Modeled
Accent Method yielded the highest the F1 score, accuracy, TN , and
TP values of all methods.

For determining the significance of the classification result, we
performed a randomization test in which the diagnostic status of the
20 participants was randomized 100 times and the SVM training
and test procedures were applied to each randomization. Figure 3
shows the histogram of the randomized SVM results and the ob-
served results; we display these histograms to show that the distribu-
tions resulting from randomization are well-behaved, lending credi-
bility to this significance testing method. The histograms show that
the observed results are far better than can be expected by chance
for the Modeled Accent Method, with marginally significant results
for the Raw Accent Method. (We used a randomization test because
the assumptions underlying conventional statistical methods such as
Hotelling’s T2 test are unlikely to be met.)

3.6. Improving the Raw Accent Method using Frame Weighting

In the preceding, we applied linear interpolation between voiced ar-
eas to replace the unvoiced areas. However, there may be regions
that, while not fully voiceless, are nevertheless low in sonorance and

(a) accuracy of Raw Accent (b) F1 score of Raw Accent

(c) accuracy of Modeled Accent (d) F1 score of Modeled Accent

Fig. 3: Reliability of the classification’s result

thus may contribute minimally to perceived pitch and/or may include
substantial segmental perturbations that are not modeled by accent
curves [28]. To address this, we applied a weight to each frame
obtained by the multiplication of the voiced/unvoiced flag and en-
ergy [11]. We used the same weight on the raw accent data, and then
we extracted the four features (loc, mag, WTSD, and WTSK) to
create Weighted Raw Accent Method. We applied the t-test on these
four features (Table 1, last row). We found marginally significant
results not only on phrase-initial feet but also on phrase-medial feet.

As we can see on Table 2, the results are slightly more accu-
rate: The Weighted Raw Accent Method with the features (Set2)
improved the F1 score and accuracy 0.03 point and 1.5 precent com-
pared to the Raw Accent Method. Yet, the results are still not as good
as for the Modeled Accent Method.

4. CONCLUSIONS

The results suggest that modest levels of classification accuracy are
obtained with a model based approach. Even if the accuracy is defi-
nitely too low for any practical use, the results are statistically highly
significant. This is both important and surprising, given that the
groups did not differ in speech intelligibility.

Importantly, the modeled accent results were better than the con-
ventional baseline method, which uses global statistics – mean and
standard deviation, or coefficient of variability. In addition, the mod-
eled accent results were also better than those of less sophisticated
methods, such as the raw accent method. Very broadly speaking, this
could mean that it is in the fine details of F0 dynamics that very mild
forms of dysarthria first become visible.

Future research will focus not only on creating better speech
corpora – with multiple diagnostic groups, careful age and gender
matching, and much larger – but also in creating methods that ad-
dress all symptoms of dysarthria: phonation, prosody, articulation,
and hypernasality.
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