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Abstract
We propose a method (“FONN”) for F0 contour generation for
text-to-speech synthesis. Training speech is automatically seg-
mented into left-headed feet, annotated with syllable start/end
times, foot position in the sentence, and the number of sylla-
bles in the foot. During training, we fit a superpositional in-
tonation model comprising accent curves associated with feet
and phrase curves. We propose to use a neural network for
model parameter estimation. We tested the method against the
HMM-based Speech Synthesis System (HTS) as well as against
a template based variant of FONN (“DRIFT”) by imposing con-
tours generated by the methods onto natural speech and obtain-
ing quality ratings. Test sets varied in degree of coverage by
training data. Contours generated by DRIFT and FONN were
strongly preferred over HTS-generated contours, especially for
poorly-covered test items, with DRIFT slightly preferred over
FONN. We conclude that the new methods hold promise for
high-quality F0 contour generation while making efficient use
of training data.
Index Terms:Prosody, Intonation modeling, Text-to-Speech
synthesis, Artificial Neural Networks

1. Introduction
Generating fundamental frequency (F0 ) in text-to-speech syn-
thesis (TTS) takes many forms, from rule-based methods in
older systems where F0 is generated by rule and then imposed
on concatenated sequences of stored acoustic units [1], to HMM
based synthesis in which F0 is generated frame-wise in par-
allel with spectral frame generation and is, again, imposed on
the spectral frames [2], to unit selection systems with enough
recordings that stored F0 can be used as-is [3].

A fundamental issue is whether frame-based methods are
able to capture a key property of F0 movement, which is that
they have — except where perturbed or interrupted by obstru-
ents — a smooth suprasegmental shape with typically no more
than two inflection points. A recent study explicitly addressing
this issue [4] considered various phonological units in a statis-
tical parametric speech synthesis framework. “Accent group”
was defined as a sequence of syllables containing an accented
syllable and not necessarily as a (left-headed) foot, which re-
quires that the first syllable is accented (e.g., [5, 6, 7]). Anu-
manchipalli [4] showed that the best-performing phonological
unit is the accent group. This result suggests that we may need
to consider units that are larger than the syllable and that, im-
portantly, do not need to coincide with word boundaries.

Earlier, we proposed a rule based F0 generation method
that guarantees that contours will have a smooth suprasegmen-
tal shape [8]. Unlike Anumanchipalli et al. [4], we use the foot
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as phonological unit [9]. It is based on the General Superpo-
sitional Model (GSM) [9], which posits that the F0 curve for a
single-phrase utterance can be written as the (generalized) sum
of a phrase curve and one accent curve for each foot.

Recently, we proposed a data-driven foot-based intonation
generator method (“DRIFT”) for English language [10] based
on the same underlying model as [8]. DRIFT employs a model-
based F0 generation method that guarantees that contours will
have a smooth suprasegmental shape [8, 11]. In contrast to Anu-
manchipalli et al. [4, 12], the phonological unit used in DRIFT
is the foot. In [13], we proposed a new intonation adaptation
method using the DRIFT to transform the perceived identity of
a TTS system to that of a target speaker with a small amount of
training data.

In the present study, we propose a foot-based neural net-
work intonation generator (“FONN”) for English language that
maps foot-based features to accent parameters using a sim-
ple ANN. We hypothesize that this method has the advantages
of foot-based methods over frame based methods that were
demonstrated by DRIFT, but has even lower training data re-
quirements than DRIFT. We note that several Artificial Neu-
ral Network (ANN) based parametric methods have been pro-
posed to predict intonation from different phonological units:
phonemes [14], syllables [15], phoneme sequences [16], and
syllable sequences [17, 18]. The SFC model [17] simulates
intonation by superpositionally combining multiple elementary
contours that are functionally defined at several levels: word,
group, phrase, and clauses. Bailly [17] used a feed-forward neu-
ral network (FFNN) with two layers per syllable in the syllable
set. The fact that SFC represents prototypical contours summa-
rized from training data means that it avoids direct modeling
of any articulatory constraints. This limits its ability for mod-
ification. Reddy [18] proposed a two-stage FFNN to predict
intonation pattern of a sequence of syllables. The first stage has
three layers with 35 dimensional feature vector (per syllable) as
input, and three F0 values — for start, middle, and end of syl-
lable based on tilt model [19] — as the output. The structure
of the second stage is the same as that of the first stage with
one difference: the input vector of second stage is obtained by
concatenating the input and output of the first stage.

We will compare F0 contours generated by FONN with
HTS-generated contours [20] and with DRIFT in a subjective
listening experiment with stimuli created by imposing contours
generated by the three methods onto natural speech. In this
test, we also explore the role of sparsity, by comparing test
items whose constituent phoneme sequences, stress patterns,
and phrasal structures are well- vs. poorly covered by the train-
ing data. This exploration is based on the conjecture that FONN
and DRIFT less sensitive to sparsity than HTS. Since DRIFT
uses templates associated with individual curves in the training
data, while FONN computes curves based on multiple observed
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Figure 1: Overview of foot-based and frame-based schemes

curves in the training data, we expect DRIFT to have a relative
advantage over FONN in well-covered test data because such
data would provide ample stored templates that closely match
the test context in terms of the selection features, but the reverse
in poorly-covered test data.

2. Model-driven, frame-based F0 generator
Multi-space probability distribution HMM (MSD-HMM) [21]
is a special case of using HMM to model observed F0 values.
MSD-HMM includes discrete and continuous mixture HMMs
to model F0. We used the HTS toolkit (version 2.2) [20] to per-
form HMM-based TTS synthesis. HTS uses the Festival speech
synthesis architecture to extract a sequence of contextual and
phonological features at several levels, such as, for a given ut-
terance, the phrase, word, syllable, phoneme, and frame levels.
As a result, there are many combinations of contextual features
to consider when obtaining models. HTS employs decision-
tree (DT) based context clustering for handling a large num-
ber of feature combinations. The left panel in Figure 1 shows
independent DT-based context clustering for F0 and duration,
respectively.

3. DRIFT: Data-driven, foot-based F0
generator

3.1. Intonation model
In a previous study [8], we proposed a new method to decom-
pose a continuous F0 contour — interpolated in unvoiced re-
gions — into component curves in accordance with the GSM:
a phrase curve and a sum of one or more accent curves (one
accent per foot).

In this method, the phrase curve consists of two log-linear
curves, between the phrase start and the start of the phrase-
final foot, and between the latter and the end point of the last
voiced segment of the phrase, respectively. We use a combina-
tion of the skewed normal distribution and a sigmoid function to
model three different types of accent curves. First, the skewed
normal distribution is employed to model rise-fall accents that
occur in non-phrase-final positions as well as, in statements, in
utterance-final positions. Second, a sigmoid function is used to
model the rise at the end of a yes/no question utterance. And,

third, the sum of the skewed normal distribution and the sig-
moid function is used to model continuation accents at the end
of a non-utterance-final phrase. (for details, see [8]).

3.2. Analysis
In order to segment training utterances (training and test set se-
lection explain in subsections 5.1 and 5.2) into foot sequences,
this method uses three contextual features: accent labels, sylla-
ble labels, and phrase boundaries, to automatically create foot
boundaries. In contrast with HTS, which uses a large number
of contextual features, we only extract five contextual features
per foot:

Set=

8
>>>>><

>>>>>:

PT : phrase type (statement, continuation)
FPos: foot position in phrase (initial, final, other)
SNum: number of syllables in foot (1, 2, >2)
OD: onset duration of stressed accented syllable
RD: rime duration of stressed accented syllable

A curve inventory is created as follows. For each training
utterance, we extract F0 and then fit the intonation model de-
scribed in subsection 3.1 to compute the phrase curve and the
accent curves. We store the vector comprising the estimated ac-
cent curve parameters and the values of OD and RD in the in-
ventory. The inventory contains twelve sub-inventories defined
in terms of the Set features PT, FPos, and SNum (middle
panel of Figure 1). Because the data were not tagged for y/n (or
any) questions, we did not include a y/n question sub-inventory.

3.3. Synthesis
In this method, an input sentence is segmented into phrases,
each phrase is segmented into a foot sequence, and for each
foot the Set features are extracted from text data. The three
first features are extracted from text data, and the value OD
and RD are predicted using force alignment applied on origi-
nal utterances [22]. A suitable accent sub-inventory is chosen
for that foot by traversing the proposed DT using the first three
features: PT , FPos, and SNum (middle panel of Figure 1).
We calculate the euclidean distance between the OD, and RD
of the current foot and the stored accent curves in the chosen
sub-inventory. The five candidate accent curves with the low-
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Poor Random Well

t-test Randomization t-test Randomization t-test Randomization
t(49) p-value mean SD t(49) p-value mean SD t(49) p-value mean SD

HTS vs. DRIFT 7.9034 2.6854e-10 1.3277 1.2454 5.9978 2.3584e-7 1.1718 1.0709 4.9139 1.0389e-5 0.6584 1.4475
HTS vs. FONN 6.7803 1.4528e-8 0.4120 1.2189 5.7140 6.4363e-7 0.2137 1.1669 2.0512 0.0456 0.5868 0.9291
DRIFT vs. FONN -0.6974 0.4888 -0.8512 0.8353 -2.2792 0.0270 -0.1916 0.9297 -2.3892 0.0208 -0.1571 1.0863

Table 1: Results of one-sample t-tests [t-value(df), p-value], and mean and standard deviation (SD) of the randomization-based t-statistic
distribution for three pairwise comparisons in three test sets that vary in how well they are covered by the training data

est distance in that sub-inventory are retrieved. To minimize the
differences between successive accent curve heights in a phrase,
we apply a Viterbi search to the sequence of candidate accent
curves; the observation matrix consists of the normalized dura-
tion distances and the transition matrix consists of the normal-
ized accent curve height differences.

4. FONN: Foot-based F0 Generator using
Neural Networks

4.1. Intonation model
We employ the same intonation model as the DRIFT
method (Section 3.1). In this model, the phrase curve consists
of two linear curves. We use the combination of the skewed
normal distribution and the sigmoid function to model the three
different types of accent curves.

4.2. Analysis
For each utterance of trainSET (described in Section 5.1, 5.2),
we extract F0 and then fit the intonation model described in sub-
section 3.1 to compute the phrase curve and the accent curves.
We store two vectors as input and target vector for each foot.
The input vector comprised of the features from feature Set.
We normalize the OD and RD by foot duration. The target vec-
tor comprises of the parameters of the estimated accent curve.
Before storing the target vector, we normalize the parameters.

We use the input and target vector to train an Artificial Neu-
ral Network (ANN) [23]. The ANN consists of two layers as
shown in the right panel of Figure 1. The input and output di-
mensions are 10 and 7, respectively. The hidden layer size is
200. The activation function in the hidden layer is sigmoid and
the activation function in the output layer is linear.

4.3. Synthesis
Like the DRIFT method (Section 3.3), an input sentence is seg-
mented into phrases, each phrase is segmented into a foot se-
quences, and for each foot the Set features are extracted from
text data. These feature vectors sequentially are given to the
trained ANN to predict accent curves parameters. We use the
predicted parameters to create accent curves for each foot.

5. Experiments
5.1. Databases
We use a US English female speaker of the CMU arctic database
(SLT) [24]. This corpus contains 1132 utterances, which are
recorded at 16bit 32KHz, in one channel. The database is au-
tomatically labelled by CMU Sphinx using FestVox labeling
scripts. No hand corrections are made.

5.2. Set coverage
In data driven approaches, data sparsity is a pervasive chal-
lenge [25]. To investigate the effects of sparsity, we employ
an algorithm [10] to select four subsets of the data: trainSet,
containing the training data; wellSET, containing test data that
are well covered by trainSET; poorSET, containing test data
that are poorly covered by trainSET; and randomSET, a ran-

dom selection from the test data. The algorithm iterates to find
a wellSET and poorSET that are maximally different in terms
of their coverage by trainSET.

5.3. Evaluation
For subjective evaluation of the intonation generation perfor-
mance of the three approaches, we design a test that measures
naturalness. We use Amazon Mechanical Turk [26], with par-
ticipants who have approval ratings of at least 95% and were
located in the United States.

We prepare three separate tests to compare each pairs of
three approaches combination (HTS Vs. DRIFT, HTS Vs.
FONN, and DRIFT Vs. FONN). For each pairs, We use a com-
parison test to evaluate the naturalness of the F0 contours syn-
thesized by the two approaches. In this test, listeners hear two
stimuli with the same content back-to-back and then are asked
which they prefer using a five-point scale consisting of -2 (defi-
nitely First one), -1 (probability First one), 0 (unsure), +1 (prob-
ability Second one), +2 (definitely Second one). We randomly
switch the order of the two stimuli. The experiment includes 50
utterance pairs for each of the three test sets (total 150 pairs).
We employed 150 listeners, that each listener only can chose
one test set (i.e., poorSET, randomSET, and wellSET) to judge.
Three trivial-to-judge utterance pairs are added to the experi-
ment to filter out unreliable listeners.

We evaluate the two approaches by imposing the F0 con-
tours generated by the two approaches onto recorded natural
speech, thereby ensuring that the comparison strictly focused
on the quality of the F0 contours and is not affected by other
aspects of the synthesis process [27]. To ensure that the F0

contours are properly aligned with the phonetic segment bound-
aries of the natural utterance, the contours are time warped so
that the predicted phonetic segment boundaries correspond to
the segment boundaries of the natural utterance. Note that the
predicted phonetic segment boundaries are the same for the two
approaches. To compute the segment boundaries of the natural
utterance, we used the HTS state duration and phoneme dura-
tion. Finally, we use PSOLA to impose the synthetic contour
onto the natural recording1.

Figure 2 shows the results of the pair-wise comparisons be-
tween the naturalness of the F0 contours synthesized by the two
configuration pairs (HTS-DRIFT, HTS-FONN, and DRIFT-
FONN). In general, perceptual results indicated superior perfor-
mance of DRIFT and FONN over HTS. DRIFT over-performed
FONN in random and well coverage cases. For significance
testing, we first compute a score for each utterance using Equa-
tion 1, and then, separately for each test set, apply a one-sample
t-test (results are summarized in Table 1). In Equation 1, j, n,
m, and Cji stand for jth utterance of current test set, number
of listeners, number of utterance of current test set, and the rat-
ing of the ith listener for the jth utterance, respectively, and ||

1The synthetic waves are available under following repository:
http://cslu.ohsu.edu/~elyasila/wav_SP16/
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indicates the absolute value.

scorej =

nP
i=1

(Cji|Cji|)
mP

j=1
(

nP
i=1

(|Cji|))
, Cji 2 {�2,�1, 0, 1, 2} (1)

Conventional t-test results for the first and second compar-
isons (Table 1, first and second rows) show that the scores for
DRIFT and FONN are significantly better than those for HTS
for all test sets. The third comparison (Table 1, last row) indi-
cates that the scores for DRIFT and FONN differ significantly
from each other for two test sets (random and well), but are the
same for poor test set. The superiority of FONN over HTS, but
not that of DRIFT over HTS, is reduced in the wellSET.

For showing the robustness of the t-test results, we also per-
form a randomization test for each comparison in each test set.
We randomly change the signs of all ratings, compute the scores
for each utterance, and then calculate the t statistic. We repeat
these steps 2000 times. The means and standard deviations of
the resulting distributions are reported in Table 1, confirming
the conventionally obtained significance levels. For example,
the t-value of the first comparison (HTS-DRIFT) for poorSET
is far from the chance (e.g., 7.90 deviates by 5.3 standard devi-
ations from the randomization mean of 1.33, for a normal t(49)-
distribution with mean 1.33 and SD of 1.24, this yields a chance
of 5.79e-8).

In another experiment, we perform a test in which we com-
pare the systems based on the impact of coverage. We first
compute a difference score for each utterance, defined by the
difference between the scores for the two approaches, and sub-
sequently perform a two-sample t-test comparing these differ-
ence scores between the poorSET and wellSET data. Only for
HTS-FONN comparison, statistically significant results were
found(t(49) = �3.5675, p = 2.8036e � 4, one-tailed; these
results were again confirmed using a randomization tests). This
result shows a powerful significant trend for the impact of cov-
erage to be stronger for the HTS approach than for FONN. Fig-
ure 2 (gray curve, right y-axis) also shows the results of com-
paring the two systems in terms of the impact of coverage.

6. Conclusion
We proposed a neural network foot-based intonational approach
(FONN) for F0 generation, with these key characteristics. First,
like DRIFT, usage of a superpositional model in which selected
accent curves are added to a phrase curve [8]. Second, also
like DRIFT, usage of a structured inventory of fitted accent
curves. Third, unlike DRIFT which uses accent curve param-
eter templates, usage of a trainable parametric method to com-
pute accent curve parameters. Both FONN and DRIFT meth-
ods result in F0 curves that are guaranteed to have the desired
smooth suprasegmental shapes, and are well-suited to handle
sparse training data as well. Perceptual results indicated supe-
rior performance of FONN and DRIFT compared to a frame-
based approach (HTS). Using a test data selection algorithm,
we were able to evaluate the impact of sparsity, with results
that tentatively confirmed, as we predicted, the ability of the
FONN to handle sparse training data better than HTS. How-
ever, there was a trend for DRIFT to outperform FONN except
in poorSET. We surmise that, for speech synthesis, template
based approaches such as DRIFT that create accent curves that
inherently preserve natural detail are to be preferred over ap-
proaches that compute accent curves. It remains to be seen,
however, whether FONN may nevertheless outperform template
based approaches in exceptionally sparse data conditions where
several slots in the template tree are missing.

a) HTS (Orange Bars) Vs. DRIFT (Blue Bars)

b) HTS (Orange Bars) Vs. FONN (Green Bars)

c) DRIFT (Blue Bars) Vs. FONN (Green Bars)

Figure 2: Each group-bars (poor, random, and well) represent
the histogram (in percentage (left y-axis)) of the related pref-
erence point: The five-point scale consisting of -2 (definitely
first version), -1 (probability first), 0 (unsure), +1 (probability
second ), +2 (definitely second). Dotted line and confidence
intervals correspond to the values (right y-axis) computed via
Equation 1.
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